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Welcome to LibKet

LibKet (pronounced lib-ket) is a lightweight expression
template [https://en.wikipedia.org/wiki/Expression_templates] library
that allows you to develop quantum algorithms as backend-agnostic
generic expressions and execute them on different quantum simulator
and hardware backends without changing your code.

Supported quantum hardware backends


	IBM Quantum Experience [https://quantum-computing.ibm.com]


	QuTech Quantum Inspire [https://quantuminspire.com]


	Rigetti Aspen [https://qcs.rigetti.com]




Supported quantum simulator backends


	Atos Quantum Learning Machine [https://atos.net/en/solutions/quantum-learning-machine]


	Google Cirq [https://quantumai.google/cirq]


	IBM Qiskit [https://qiskit.org]


	QE-Lab OpenQL [https://openql.readthedocs.io]


	QuEST - Quantum Exact Simulation Toolkit [https://quest.qtechtheory.org]


	QuTech QX simulator [https://qutech.nl/qx-quantum-computer-simulator/]


	Rigetti PyQuil [http://docs.rigetti.com/]




All you need to get started is a C++14 (or better) compiler and,
optionally, Python 3.x [https://www.python.org] to execute quantum
algorithms directly from within LibKet.


User Documentation



	Installation Guide

	Basics

	Advanced

	Library

	Tutorials

	API documentation

	Release Notes

	Frequently Asked Questions









            

          

      

      

    

  

    
      
          
            
  
Installation Guide

LibKet is designed as header-only C++ library with minimal external
dependencies. All you need to get started is a C++14 (or better)
compiler and, optionally, Python 3.x to execute quantum algorithms
directly from within LibKet. Instructions on how to install
prerequisites, download LibKet, and configure and
build it can be found
below.


Installing prerequisites

LibKet uses standard C++14 code and has minimal requirements, which are as follows:


	C/C++compiler that supports the C++14 standard (or better);


	CMake [http://www.cmake.org] configuration tools version 3.x (or better);


	Python [https://www.python.org] version 3.x (or better) header and library files (optional);


	Doxygen [http://www.doxygen.org] documentation tool (optional);


	Sphinx [https://www.sphinx-doc.org] documentation tool (optional)




These prerequisites can be installed as follows:


Linux RedHat/CentOS 7.x (or better)

First, install the basic development tools

sudo yum update
sudo yum group install "Development Tools"





Next, install CMake3 and Doxygen (optional) and Python 3.x
(optional). If you have RedHat/CentOS 7.7 or better, you can simply
run

sudo yum install cmake3 doxygen git python3 python3-devel python3-libs





Releases prior to 7.7 do not provide Python 3.x and require to install
it from a third-party repository such as [IUS](https://ius.io/setup)
or [EPEL](https://fedoraproject.org/wiki/EPEL).

If you are running RedHat/CentOS 8.x or better you are done
here. The GCC version that is shipped with RedHat/CentOS 7.x is
too old to compile LibKet and needs to be updated from the
Software Collections [https://www.softwarecollections.org/en/]

sudo yum install centos-release-scl
sudo yum install devtoolset-7





From now on, GCC v7.x can be used by running

scl enable devtoolset-7 bash







Linux Ubuntu 18.x (or better)

All prerequisites can be installed by running the following oneliner

sudo apt-get update
sudo apt install build-essential cmake doxygen git python3-dev python3-pip --fix-missing







macOS

The easiest way to get started under macOS is to install the XCode
Command Line Tools by opening a Terminal in /Applications/Utilities/
and running the one-liner

xcode-select --install





Afterwards, install the package manager homebrew [https://brew.sh]
by running

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"





Once that is done you can install the prerequisites as follows

brew update
brew install cmake doxygen gcc python





Note that the QX simulator does not run under Apple Silicon
(M1). Moreover, some Python packages might not install correctly. We
are working on a one-liner installation procedure.



Windows 10

The easiest way to get started under Windows 10 is to install the
Windows 10 Linux subsystem [https://docs.microsoft.com/en-us/windows/wsl/install-win10] and a
Linux distribution of your choice and compile and run LibKet
inside the Linux subsystem. In our experience, Ubuntu Linux [https://tutorials.ubuntu.com/tutorial/tutorial-ubuntu-on-windows]
works fine.

Note that LibKet does not compile under Microsoft Visual Studio 2017
or 2019. We are working on a native port.




Downloading LibKet


Stable version

The latest stable version of the LibKet code can be obtained
from GitLab [https://gitlab.com/mmoelle1/LibKet] as:


	https://gitlab.com/mmoelle1/LibKet/-/archive/master/LibKet-master.zip


	https://gitlab.com/mmoelle1/LibKet/-/archive/master/LibKet-master.tar.gz


	https://gitlab.com/mmoelle1/LibKet/-/archive/master/LibKet-master.tar.bz2


	https://gitlab.com/mmoelle1/LibKet/-/archive/master/LibKet-master.tar




If you are interested in a specific version you can download zip files
of specific releases [https://gitlab.com/mmoelle1/LibKet/releases].

A better way to obtain the latest revision from GitLab [https://gitlab.com/mmoelle1/LibKet] and additionally have the
convenience to receive updates of the code is to use Git.

On Linux/macOS, you may checkout the latest revision using

git clone https://gitlab.com/mmoelle1/LibKet.git





or

git clone git@gitlab.com:mmoelle1/LibKet.git





On Windows, you can use GitHub Windows client [https://windows.github.com] or any other Git client.



Developer version

If you are interested in trying out the development version of the
LibKet code switch to the develop branch once you the initial
cloning of the Git repository succeeded

cd LibKet
git checkout --track origin/develop








Configuring and building LibKet

Assuming that LibKet has been downloaded to the source folder
LibKet the following sequence of commands will compile all
examples with the common Quantum Assembly Language (CQASM) v1.0 [https://arxiv.org/abs/1805.09607] (cQASMv1) backend enabled and
execute the program tutorial01_simple.

cd LibKet
mkdir build
cd build
cmake .. -DLIBKET_WITH_EXAMPLES=ON -DLIBKET_WITH_CQASM=ON
make
...
[100%] Built
./examples/tutorial01_simple





Please note that the so-compiled tutorials try to establish a connection with the
remote QI-Simulator. Details on how to configure LibKet for the QI-backend can be
found in LibKet Activating additional quantum backends

The following configuration options can be used with the cmake -D flag:







	Configuration
Command

	Description





	LIBKET_BUILD_COVERAGE

	Build LibKet with code coverage



	LIBKET_BUILD_DOCS

	Enable generation of Doxyen and Sphinx Docs



	LIBKET_BUILD_C_API

	Build the C API library



	LIBKET_BUILD_PYTHON_API

	Build the Python API library



	LIBKET_BUILD_EXAMPLES

	Build the example and tutorial programs



	LIBKET_BUILD_UNITTESTS

	Build unit tests



	LIBKET_BUILTIN_OPENQL

	Use built-in OpenQL Simulator



	LIBKET_BUILTIN_QUEST

	Use built-in QuEST Simulator



	LIBKET_BUILTIN_QX

	Use built-in QX Simulator



	LIBKET_BUILTIN_UNITTESTS

	Use built-in UnitTests++



	LIBKET_L2R_EVALUATION

	Enable left-to-right evaluation



	LIBKET_GEN_PROFILING

	Enable generation of profiling data



	LIBKET_OPTIMIZE_GATES

	Enable optimization of gates, e.g. H(H(q0)) = I(q0)



	LIBKET_PROF_COMPILE

	Enable profiling of compilation



	LIBKET_USE_PCH

	Enable use of precompiled headers



	LIBKET_WITH_AQASM

	Enable support for Atos QASM



	LIBKET_WITH_CIRQ

	Enable support for Cirq used by Google



	LIBKET_WITH_CQASM

	Enable support for Common QASM used by QuTech’s QX simulator



	LIBKET_WITH_MPI

	Enable support for MPI



	LIBKET_WITH_OPENMP

	Enable support for OpenMP



	LIBKET_WITH_OPENQASM

	Enable support for OpenQASM used by IBMs Qiskit framework



	LIBKET_WITH_OPENQL

	Enable support for OpenQL used by QuTech’s OpenQL simulator



	LIBKET_WITH_QASM

	Enable support for Qasm2circ LaTeX export



	LIBKET_WITH_QUEST

	Enable support for Quantum exact simulation toolkit by University of Oxford, UK



	LIBKET_WITH_QUIL

	Enable support for Quantum instruction set architecture used by Rigetti



	LIBKET_WITH_QX

	Enable support for QuTech’s QX simulator








Activating additional quantum backends

LibKet supports the following quantum computing backends








	backend name

	description

	note





	LibKet::QBackend::AQASM

	Atos Quantum Assembly Language (AQASM) [https://atos.net/en/solutions/quantum-learning-machine]

	1



	LibKet::QBackend::Cirq

	Cirq [https://github.com/quantumlib/Cirq]

	2



	LibKet::QBackend::cQASMv1

	Common Quantum Assembly Language (cQASM) v1.0 [https://arxiv.org/abs/1805.09607]

	3



	LibKet::QBackend::openQASMv2

	Open Quantum Assembly Language (openQASM) v2.0 [https://arxiv.org/abs/1707.03429]

	4



	LibKet::QBackend::OpenQL

	QuTech’s OpenQL framework [https://github.com/QE-Lab/OpenQL]

	6



	LibKet::QBackend::QASM

	QASM for the quantum circuit viewer qasm2circ [https://www.media.mit.edu/quanta/qasm2circ]

	6



	LibKet::QBackend::Quil

	Rigetti’s Quantum Instruction Language [https://arxiv.org/abs/1608.03355]

	5



	LibKet::QBackend::QuEST

	Quantum Exact Simulation Toolkit (QuEST) [https://quest.qtechtheory.org]

	6



	LibKet::QBackend::QX

	QuTech’s QX simulator [https://github.com/QE-Lab/qx-simulator]

	6







	For using the full functionality of the AQASM backend you need
to have access to a Quantum Learning Maching (QLM). This is
proprietary software. Further information will come soon.


	For using the full functionality of the Cirq backend you need
to have the cirq Python package installed. This can be done by
running either of the following commands:

pip3 install cirq      # installs Cirq in the global environment
make install-cirq-venv # installs Cirq in a virtual environment
make install-cirq      # installs Cirq in the global environment





When using the CMake approach (make) the default location of
the Python virtual environment is
$PYTHON_VENV_DIR/venv/cirq-$CIRQ_VERSION, where
$PYTHON_VENV_DIR and CIRQ_VERSION are environment
variables. If not given then the virtual environment is installed
in the CMake project binary directory and/or without version
number.



	For using the full functionality of the cQASMv1 backend you
need to have the quantuminspire Python package installed (see
above for an explanation of the following commands).

pip3 install quantuminspire
make install-quantuminspire-venv
make install-quantuminspire





In order to execute the quantum kernels on QuTech’s Quantum Inspire (QI) [https://quantuminspire.com] cloud platform, you are required to
have a user account, which can be created free-of-charge here [https://www.quantum-inspire.com/account/create]. Once you created a
free user account it suffices to set the following environment
variables:

Bash

export QI_USERNAME=<your username>
export QI_PASSWORD=<your password>





Csh/Tcsh

setenv QI_USERNAME <your username>
setenv QI_PASSWORD <your password>





LibKet will use this information to establish the connection
with the remote QI simulator.



	For using the full functionality of the openQASMv2 backend you
need to have the qiskit Python package installed (see above for
an explanation of the following commands).

pip3 install qiskit
make install-qiskit-venv
make install-qiskit







	For using the full functionality of the Quil backend you need
to have the pyquil Python package installed (see above for an
explanation of the following commands).

pip3 install pyquil
make install-pyquil-venv
make install-pyquil





In addition, you need to have the Forest SDK [https://qcs.rigetti.com/sdk-downloads] installed which includes
the Rigetti quil compiler [https://github.com/rigetti/quilc] and
the Rigetti quantum virtual machine [https://github.com/rigetti/qvm]. The CMake targets only point
you to the website but do not install the Forest SDK.



	Prerequisites for these backends are bundled with LibKet as Git
submodules and do not have to be installed separately. It is,
however, still possible to install them externally, e.g.,
system-wide and request LibKet to use them by passing the following
arguments to CMake, e.g.

cmake .. -DLIBKET_BUILTIN_OPENQL=OFF -DOPENQL_INCLUDE_PATH=<path to OpenQL include files>
cmake .. -DLIBKET_BUILTIN_QUEST=OFF  -DQUEST_INCLUDE_PATH=<path to QuEST include files>
cmake .. -DLIBKET_BUILTIN_QX=OFF     -DQX_INCLUDE_PATH=<path to QX include files>





LibKet makes use of the UnitTest++ [https://unittest-cpp.github.io] framework for unit testing. Like
the above, it is bundled with LibKet as Git submodule but can be
overwritten as follows

cmake .. -DLIBKET_BUILTIN_UNITTESTS=OFF -DUNITTESTPP_INCLUDE_PATH=<path to UnitTest++ include files>











Docker images

The quickest way to explore LibKet without going through all
installation steps is by trying one of the pre-build images [https://hub.docker.com/repository/docker/mmoelle1/libket] for
Docker [https://www.docker.com/get-started] or its daemonless
counterpart Podman [https://podman.io].

Once you have installed one of these tools, getting started with
LibKet is as easy as running the following one-liner in your terminal

docker run --rm -ti mmoelle1/libket:qx





or

podman run --rm -ti mmoelle1/libket:qx





Please check the full online documentation [https://hub.docker.com/repository/docker/mmoelle1/libket] for
additional configuration options.



Generating the LibKet documentation

Libket supports the generation of project documentations with Doxygen [http://www.doxygen.org/]
and Sphinx [https://www.sphinx-doc.org/]. Make sure to set the -DLIBKET_BUILD_DOCS=ON flag
when configuring cmake.

If Doxygen [http://www.doxygen.org/] is available on your system,
you can generate and open the Doxygen HTML pages by executing

cd build
make Doxygen
...
Built target Doxygen
firefox doc/doxygen/html/index.html





If Sphinx [https://www.sphinx-doc.org/] is available on your
system, you can generate and open the Sphinx HTML pages by executing

cd build
make Sphinx
...
Built target Sphinx
firefox doc/sphinx/index.html





If you want to generate both documentations simply type

cd build
make docs





Next read Components.





            

          

      

      

    

  

    
      
          
            
  
Basics

The LibKet basiscs will cover the creation of simple generic quantum expressions, executing
these expressions on different quantum backends and explaination of some quantum visualisation
tools.


Generic Quantum Expressions

This section will cover the basics of creating a generic quantum expression
in LibKet, selecting qubits with filters and applying gates to selected qubits.
LibKet’s main components are


	Filters


	Gates


	Circuits


	Devices




Read this page for a quick overview of the different components.


Initialization

In order to work with an quantum expression, first an empty expression needs to be created.
This can simply be done with:

auto expr = init();





Which creates an empty expression object. Notice that the number of qubits does not need to
be specified yet and will be derived from the quantum device setup later.



Filters

Filters let you restrict the set of qubits to which an action such as
a quantum gate or expression is applied. Filters operate relative to
the input expression and can be combined to filter chains.


Filter functions

LibKet provides the following filter functions


	all([expr]) resets all previous filters and selects all qubits


	qubit<q>([expr]) selects the q-th qubits


	qureg<q,length>([expr]) selects all qubits between q and q+length-1


	range<qbegin,qend>([expr]) selects all qubits between qbegin and qend


	select<q0,q1,...>([expr]) selects individual qubits q0, q1, …


	shift<offset>([expr]) shifts the selected qubits by a positive or
negative offset




For a detailed description check the Library.

Here and below [expr] means that the function can be called with
and without an expression expr as will become clear from the
following example.

Example

The following code snippet illustrates how to combine multiple filters
to a filter chain that, though overly complicated, selects the first
qubit. Note that counting starts at 0 as it is common practice in
C/C++

auto f0 = select<0,4,2,6>(); // selects q0, q4, q2, q6
auto f1 = range<1,2>(f0);    // selects     q4, q2
auto f2 = qubit<1>(f1);      // selects         q2







Filter classes

An alternative way to create filters is by instantiating objects of
filter classes and applying them using their operator().

Example

With this approach the above example code reads

auto f0 = QFilterSelect<0,4,2,6>();      // selects q0, q4, q2, q6
auto f1 = QFilterSelectRange<1,2>()(f0); // selects     q4, q2
auto f2 = QBit<1>()(f1);                 // selects         q2





Filter classes and functions can be combined since the functions are
aliases that return an instance of the corresponding filter class.



Filter tags

The current selection can be saved using the tag<id>([expr])
function and restored at any later time via gototag<id>([expr]).

Example

auto f0 = select<0,4,2,6>(); // selects  q0, q4, q2, q6
auto f1 = tag<42>(f0);       // tags     q0, q4, q2, q6
auto f2 = range<1,2>(f1);    // selects      q4, q2
auto f3 = qubit<1>(f2);      // selects          q2
auto f4 = gototag<42>(f3);   // restores q0, q4, q2, q6





It is recommended to saveguard quantum expressions that should be
usable as generic components in other expressions with a tag and
restore the original selection on exit.

auto myexpression = gototag<42>( your-quantum-expression( tag<42>() ) );





The above expression can now be applied without changing the selection
on return.

auto f0 = select<0,4,2,6>();
auto e0 = myexpression(f0);  // q0, q4, q2, q6 selected on return





Tags can be nested with different or same numbers. If multiple tag<id> s
with the same id number are applied without a resolving gototag<id>
then the next gototag<id> restores the selection of the ‘nearest’ tag<id>

auto f0 = all(tag<0>(range<1,2>(tag<0>(all()))));
auto f1 = gototag<0>(f0); // restores range<1,2>()







Filter Concatenations

Filters can be concatenated into a new filter by using thd << operator:

auto f0 = select<0,2>(); // selects q0, q2
auto f1 = select<1,3>(); // selects q1, q3
auto f2 = f0<<f1;        // selects q0, q2, q1, q3








Gates

Gates apply to all qubits of the current filter chain in a
single-instruction multiple-data (SIMD) like fashion. That is, a
single-qubit gate like the Hadamard (H) gate when applied to an
\(n\)-qubit register is applied to each single qubit individually


\[H^{\otimes n}\lvert\psi\rangle = H\lvert\psi_0\rangle\otimes\cdots\otimes H\lvert\psi_{n-1}\rangle\]


Unary (One qubit) Gates

This gate set includes all one-qubit operations, such as Pauli operations, arbitrary rotations
around the X-, Y- or Z-axis and measurements. Examples are:

auto e0 = h([expr]);            //Applies a Hadamard gate to all qubits in [expr]
auto e1 = rz([theta], [expr]);  //Applies a Z-rotation to all qubits in [expr] by angle [theta]







Binary (Two qubit) Gates

This gate set includes all two-gubit operations, such as CNOT, CPHASE or other controlled
rotations. Examples are:

auto e0 = cnot(sel<0>(), sel<1>([expr]));            //CNOT gate on qubit 0 (control) and qubit 1 (target) in [expr]
auto e1 = cphase([theta], sel<0>(), sel<1>([expr])); //CPhase gate on qubit 0 (control) and qubit 1 (target) in [expr] by angle [theta]







Ternary (Three qubit) Gates

This gate set includes all three-gubit operations, such as the TOFFOLI gate:

auto e0 = ccnot(sel<0>(), sel<1>(), sel<2>([expr])); //Toffoli gate on qubit 0, 1 (control) and qubit 2 (target) in [expr]







Example

With this convention in mind we are ready to write our first quantum algorithm

auto e0 = init();
auto e1 = sel<0,2>(e0);
auto e2 = h(e1);
auto e3 = all(e2);
auto e4 = cnot(sel<0,2>(), sel<1,4>(e3));
auto e5 = measure(all(e4));





which corresponds to the following quantum circuit

[image: Figure made with TikZ]

This image shows the circuit created with the above line of code


In LibKet we have provided as standard implementation of many of the
quantum gates commonly used in quantum algorithms. For all gates, see the Library section Gates.




Circuits

Certain quantum circuits are used in the implementation of many quantum algorithms. To make it easier to implement large quantum algorithms some of these circuits are standardly implemented in LibKet. This way the user can create a large quantum circuit with just a single line of code!

Example: Quantum Fourier Transform

The code below can be used to apply the Quantum Fourier Transform on qubits 0 to n.

auto expr = qft(range<0,n>(init()));





This generates the following circuit for \(n = 5\):

[image: Figure made with TikZ]

This image shows the circuit created with the above line of code


Apart from QFT LibKet also has a standard implementation of other quantum circuits. See section Circuits for all available circuits currently implemented in LibKet.




Devices

With the succesful creation of a quantum expression, it can now be executed on a quantum device.
This is where the power of LibKet shows, by reinterpeting the generic quantum expression to a
the device specific quantum assembly language. For all quantum devices see the Library section
Devices.

A quantum device can be initialised with the QDevice<QDeviceType, Qubits> class. The generic
quantum expression can then we loaded onto the device (Note: The number of qubits used in the quantum
expression must not exceed the number of qubits set to the QDevice). Then the device can evaluate
the quantum expression for a given number of shots. Here an example is given to evaluate a quantum expression
on the QuEST simulator of 4 qubits for 2048 shots:

QQDevice<QDeviceType::quest, 4> device; // Initalize quantum device (QuEST simulator for 4 qubits)
device(expr);                           // Load generic quantum expression to device
device.eval(2048);                      // Evaluate the quantum kernel for 2048 shots






Result retrieval (Python based)

Retrieving the results differs slightly from device to device. For Python oriented backends (AQASM, Cirq, cQASM, OpenQASM, Quil) results put in a JSON object. The following code snippet shows how the result is loaded into a JSON object  and results are printed to standard output:

utils::json result = device.eval(shots);
std::cout << "Job ID     : " << device.get<QResultType::id>(result)               << std::endl;
std::cout << "Time stamp : " << device.get<QResultType::timestamp>(result)        << std::endl;
std::cout << "Histogram  : " << device.get<QResultType::histogram>(result)        << std::endl;
std::cout << "Duration   : " << device.get<QResultType::duration>(result).count() << std::endl;
std::cout << "Best       : " << device.get<QResultType::best>(result)             << std::endl;





Alternatively, the entire content of the JSON object can be dumped to the output with:

std::cout << result << std::endl;          //Print without formatting
std::cout << result.dump(2) << std::endl;  //Use pretty print with indent 2







Result retrieval (QuEST & QX)

The QuEST and QX simulators can simulate the state of a quantum register and return an exact result of the
qubit states. It can also determine the probabilities of a quantum states and simulate a measurement distribution.
The following code print the results for a QuEST or QX device. An example output is given for \(H\lvert0\rangle\)

QuEST example:

auto expr = h(init());

//QuEST Simulator
QDevice<QDeviceType::quest, 1> quest;
quest(expr);
quest.eval(1);
std::cout << quest.reg()           << std::endl; //Returns exact quantum state
std::cout << quest.probabilities() << std::endl; //Returns probalities of quantum states
std::cout << quest.creg()          << std::endl; //Returns a classical measurement





Output:

--------------[quantum state]--------------
     (+0.70710678,+0.00000000) |0> +
     (+0.70710678,+0.00000000) |1> +
-------------------------------------------
0.500000000000000,0.500000000000000
0





QX example:

auto expr = h(init());

//QX Simulator
QDevice<QDeviceType::qx, 1> qx;
qx(expr);
qx.eval(1);
qx.reg().dump();  //Prints execution time, quantum state and measurement data





Output:

[+] executing circuit '' (1 iter) ...
[+] circuit execution time: 0.000235529 sec.
--------------[quantum state]--------------
  [p = +0.5000000]  (+0.7071068,+0.0000000) |0> +
  [p = +0.5000000]  (+0.7071068,+0.0000000) |1> +
-------------------------------------------
[>>] measurement averaging (ground state) :  | +0.00000000 |
-------------------------------------------
[>>] measurement prediction               :  |         X |
-------------------------------------------
[>>] measurement register                 :  |         0 |
-------------------------------------------








Visualization

The show() function

Filters and all other components generate an abstract syntax tree [https://en.wikipedia.org/wiki/Abstract_syntax_tree] (AST) that
represents the quantum expression. If you are interested how this AST
looks like or you want to debug your expression use the
show<depth>(expr) function. Only one level of the AST is printed by default.

Qasm2Circ

The qasm2tex_visualizer device can load an expression and output a LaTeX file
which in combination with the xyqcirc.tex [https://github.com/eschmidgall/qasm2circ/blob/master/xyqcirc.tex] file
can create a LaTeX image of the quantum circuit. Example:

QDevice<QDeviceType::qasm2tex_visualizer, nqubits> device;
device(expr);
device.to_file("filename");





Other LaTeX Parsers

The Qiskit, Cirq and IBMQ devices provide a LaTeX parser that can convert the quantum expression
to a LaTeX code string. This string can then be printed to the standard output:

std::cout device.to_latex() << std::endl;





Terminal Visualisation

The Qiskit, Cirq and IBMQ devices also provide a terminal ASCII art visualisation of the quantum
expression. This can be directly printed on the command-line interface, negating the need for
a LaTeX interpreter

std::cout device.print_circuit() << std::endl;





Next read Components.





            

          

      

      

    

  

    
      
          
            
  
Advanced


Static For Loop

Since quantum expressions are evaluated at compile time, it is not possible to generate an
expression with a runtime for-loop. However, in order to build larger quantum circuits, using
a for loop will become a necessaty. Looping over quantum expressions can thus be done with the
static_for() function. The generic interface of the static_for() function reads:

template<index_t for_start,
         index_t for_end,
         index_t for_step,
         template<index_t start, index_t end, index_t step, index_t index> class functor,
         typename functor_return_type,
         typename... functor_types>
inline auto
static_for(functor_return_type&& functor_return_arg,
           functor_types&&... functor_args)





Below is a small example on how to use the static_for() function. First, a functor
needs to be created, which represents the loop’s body:

template<index_t start, index_t end, index_t step, index_t index>
struct ftor
{
    template<typename Expr>
    inline constexpr auto operator()(Expr&& expr) noexcept
    {
        // Returns the controlled phase shift gate with angle
        // theta = pi/2^(index+1) between qubits index and index+1
        return crk<index+1>(sel<index>  (gototag<0>()),
                            sel<index+1>(gototag<0>(expr))
                           );
    }
};





To loop through this functor (at compile time) we call the utils::static_for<start, end, step, body>(...) function as follows.
Note the usefulness of the tag/gototag mechanism to restore the original filter settings easily.

auto expr = utils::static_for<0,4,1,ftor>(tag<0>(init()));





This then generates the following 6 qubit circuit with only one line of code! Notice that the end index is set to 4 and is thus also included in the loop, similar to the regular for(int i=start; i<=end; i+=step){}

[image: Figure made with TikZ]

Generated circuit by the static_for loop




Computational offloading

LibKet’s computation offloading model is very similar to that of CUDA to ease the transition from GPU- to quantum-accelerated computing. The device.eval(...) is just one of three ways to run a quantum expression, which we will refer to as quantum kernel, on a quantum device.


	LibKet::utils::json device.eval(...) :
	This function offloads the quantum computation to the quantum device and returns the evaluated result as JSON object once the quantum computation has completed. Exceptions are the QuEST and QX simulators where a reference to the internal state vector is returned.



	LibKet::QJob* device.execute(...)
	Offloads the quantum computation to the quantum device and returns a QJob pointer once the quantum computation has completed.



	LibKet::QJob* device.execute_async(...)
	Offloads the quantum computation to the quantum device and returns a QJob pointer immediately.





The execute() and execute_async() have a similar interface as the eval() function:

QJob<QJobType::CXX>* execute(std::size_t shots                               = [default from ctor],
                             std::function<void(QDevice_QuEST*)> ftor_init   = NULL,
                             std::function<void(QDevice_QuEST*)> ftor_before = NULL,
                             std::function<void(QDevice_QuEST*)> ftor_after  = NULL,
                             QStream<QJobType::CXX>*             stream      = NULL)





Notice that different functors are optional parameters, which will be elaborated on in the next section. The QJob objects supports the following functionality


	QObj* wait(): waits for the job to complete (blocking)


	bool query(): returns true if the job completed and false otherwise (non-blocking)


	utils::json get(): returns the result as JSON object after completion (blocking)




Let’s conclude these exection options with an example. Here an expression is executed asychronously for 20 shots on the Qiskit QASM simulator. The results are retreived with the get() function, which waits for the qpu to finish execution and return results.

QDevice<QDeviceType::qiskit_qasm_simulator, 2> qpu;
qpu(expr);
auto job = qpu.execute_async(20);
result = job->get();
std::cout << result.dump(2) << std::endl;







Execution Scripts

The optional hooks ftor_init, ftor_before, and ftor_after make it possible to inject user-defined code at three different locations of the execution process:


	script_init
	This functor is performed before any other code of the execution process. It can be used for importing additional Python modules.



	script_before
	This functor is performed just before sending the instructions to the quantum device. It can be used to pre-process the quantum circuit, e.g., to perform user-specific optimizations on the raw quantum circuit, before it runs through the backend-specific pipeline



	script_after
	Performed just after receiving the result from the quantum device. It can be used to post-process the raw results received from the quantum device, e.g., to generate histograms or other types of visualizations





Let’s inject a simple statement after the execution that collects the histogram data of the experiment using Qiskit’s get_count() function.

auto job = qiskit.execute_async(20,
                                /* init_script   */
                                "",
                                /* before_script */
                                "",
                                /* after_script */
                                "counts = result.get_counts(qc)\n"
                                "return json.dumps(counts)\n"
                                );
std::cout << job->get().dump(2) << std::endl;





It should be noted that the code injections are idented automatically and must not have trailing \t’s. Each line must end with \n.



Parameterized circuits [WIP]

The creating of parameteterized circuits is still under development. When finished,
LibKet will be able to support platforms that use parameterised circuits, such
as Qiskit Runtime [https://quantumcomputing.com/strangeworks/qiskit-runtime].
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Filters


	
group filters

	Quantum filters are used to select a subset of qubits of a LibKet::QExpression object to which a particular quantum gate is applied. The following code creates a quantum filter that selects the first three qubits:

auto filter = QFilterSelectRange<0,2>();







The same can be achieved using wrapper functions:

auto filter = filters::range<0,2>();







Quantum filters can be combined to a quantum filter chain. The following code creates a quantum filter that selects the first three even qubits and shifts them by +1 afterwards:

auto filter = filters::shift<1>(filters::sel<0,2,4>());







Quantum filter chains can also be created by creating individual LibKet::filters::QFilter objects and using their LibKet::filters::QFilter::operator()

auto filter = QFilterShift<1>() ( QFilterSelect<0,2,4>() );







LibKet provides the following quantum filters (with wrapper functions):


	LibKet::filters::QFilterSelect (LibKet::filters::sel)


	LibKet::filters::QFilterSelectAll (LibKet::filters::all)


	LibKet::filters::QFilterShift (LibKet::filters::shift)


	LibKet::filters::QFilterSelectRange (LibKet::filters::range)


	LibKet::filters::QRegister (LibKet::filters::qureg)


	LibKet::filters::QBit (LibKet::filters::qubit)






All quantum filters are implemented as expression templates so that, when multiple filters are combined to a filter chain, a single LibKet::filters::QFilter object is created at compile time. 


	
template<typename _expr, bool = std::is_base_of<filters::QFilter, typename std::decay<_expr>::type>::value>
struct getFilter


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/QFilter.hpp>

Type trait extracts the filter from an expression. 






	
template<typename _expr, bool = std::is_base_of<filters::QFilter, typename std::decay<_expr>::type>::value>
struct getPreviousFilter


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/QFilter.hpp>

Type trait extracts the previous filter from an expression. 






	
class QFilter : public LibKet::QBase


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/QFilter.hpp>

Filter base class. 

The Quantum filter base class is the base class of all Quantum filter classes. It is used to identify a generic type T as Quantum filter, e.g.

template <typename T
bool is_filter(T t) { return std::is_base_of<QFilter, typename
std::decay<T>::type>::value; }





 

Subclassed by LibKet::filters::QFilterSelectAll











Gates


Initialisation


	
group init

	
Functions


	
inline constexpr auto init() noexcept


	Init gate creator. 

This overload of the LibKet::gates::init() function can be used as the inner-most gate in a quantum expression


Be careful with using the initialization gate as terminal in quantum expressions that serve as sub-expressions. The following code creates two sub-expressions both using the initialization gate as terminal and creates them to another expression. The so-defined quantum expression is likely invalid since it re-initializes the quantum expr within the algorithm

auto expr1 = gates::hadamard( gates::init() );
auto expr2 = gates::hadamard( gates::init() );

auto expr3 = expr1( expr2 );





 


Warning












	
class QInit : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Init.hpp>

Init gate class. 

The Init gate class implements the initialization gate for an arbitrary number of quantum bits 










	
group prep_x

	
Functions


	
inline constexpr auto prep_x() noexcept


	Prep_X gate creator. 

This overload of the LibKet::gates::prep_x() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::prep_x();





 








	
class QPrep_X : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Prep_X.hpp>

Prep_X class. 

The Prep_X class implements the initialization of an arbitrary number of quantum bits in the X-basis. Striktly speaking, Prep_X is not a quantum gate.

By using Prep_X, qubits will be initialized in the x-basis in the \(\left|+\right> = \frac{\left|0\right> + \left|1\right>}{\sqrt{2}}\) state 










	
group prep_y

	
Functions


	
inline constexpr auto prep_y() noexcept


	Prep_Y gate creator. 

This overload of the LibKet::gates::prep_y() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::prep_y();





 








	
class QPrep_Y : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Prep_Y.hpp>

Prep_Y class. 

The Prep_Y class implements the initialization of an arbitrary number of quantum bits in the Y-basis. Striktly speaking, Prep_Y is not a quantum gate.

By using Prep_Y, qubits will be initialized in the y-basis in the \(\left|+i\right> = \frac{\left|0\right> + i\left|1\right>}{\sqrt{2}}\) state 










	
group prep_z

	
Functions


	
inline constexpr auto prep_z() noexcept


	Prep_Z gate creator. 

This overload of the LibKet::gates::prep_z() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::prep_z();





 








	
class QPrep_Z : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Prep_Z.hpp>

Prep_Z class. 

The Prep_Z class implements the initialization of an arbitrary number of quantum bits in the Z-basis. Striktly speaking, Prep_Z is not a quantum gate.

By using Prep_Z, qubits will be initialized in the z-basis in the \(\left|0\right>\) . 










	
group reset

	
Functions


	
inline constexpr auto reset() noexcept


	Reset gate creator. 

This overload of the LibKet::gates::reset() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::reset();





 








	
class QReset : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Reset.hpp>

Reset class. 

The Reset class implements the initialization of an arbitrary number of quantum bits in the Z-basis. Striktly speaking, Reset is not a quantum gate. 











Measurements


	
group measure

	
Functions


	
inline constexpr auto measure() noexcept


	Measure gate creator. 

This overload of the LibKet::gates::measure() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::measure();





 








	
class QMeasure : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Measure.hpp>

Measure class. 

The Measure class implements the measurement of an arbitrary number of quantum bits in the Z-basis. Striktly speaking, measure is not a quantum gate. 










	
group measure_x

	
Functions


	
inline constexpr auto measure_x() noexcept


	Measure_X gate creator. 

This overload of the LibKet::gates::measure_x() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::measure_x();





 








	
class QMeasure_X : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Measure_X.hpp>

Measure_X class. 

The Measure_X class implements the measurement of an arbitrary number of quantum bits in the Z-basis. Striktly speaking, Measure_X is not a quantum gate. 










	
group measure_y

	
Functions


	
inline constexpr auto measure_y() noexcept


	Measure_Y gate creator. 

This overload of the LibKet::gates::measure_y() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::measure_y();





 








	
class QMeasure_Y : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Measure_Y.hpp>

Measure_Y class. 

The Measure_Y class implements the measurement of an arbitrary number of quantum bits in the Z-basis. Striktly speaking, Measure_y is not a quantum gate. 










	
group measure_z

	
Functions


	
inline constexpr auto measure_z() noexcept


	Measure_Z gate creator. 

This overload of the LibKet::gates::measure_z() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::measure_z();





 








	
class QMeasure_Z : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Measure_Z.hpp>

Measure_Z class. 

The Measure_Z class implements the measurement of an arbitrary number of quantum bits in the Z-basis. Striktly speaking, Measure_z is not a quantum gate. 











Single Qubit Gates


	
group pauli_x

	
Functions


	
inline constexpr auto pauli_x() noexcept


	Pauli_X gate creator. 

This overload of the LibKet::gates::pauli_x() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::pauli_x();





 








	
class QPauli_X : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Pauli_X.hpp>

Pauli_X gate class. 

The Pauli_X gate class implements the quantum Pauli_X gate for an arbitrary number of quantum bits.

The Pauli_X gate is a single-qubit operation that maps the basis state \(\left|0\right>\) to \(\left|1\right>\) and \(\left|1\right>\) to \(\left|0\right>\).

The Pauli_X gate is a single-qubit rotation through \(\pi\) radians around the x-axis.

The unitary matrix reads


\[\begin{split} X = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \end{split}\]

 










	
group pauli_y

	
Functions


	
inline constexpr auto pauli_y() noexcept


	Pauli_Y gate creator. 

This overload of the LibKet::gates::pauli_y() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::pauli_y();





 








	
class QPauli_Y : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Pauli_Y.hpp>

Pauli_Y gate class. 

The Pauli_Y gate class implements the quantum Pauli_Y gate for an arbitrary number of quantum bits.

The Pauli_Y gate is a single-qubit operation that maps the basis state \(\left|0\right>\) to \(-i\left|1\right>\) and \(\left|1\right>\) to \(i\left|0\right>\).

The Pauli-Y gate is a single-qubit rotation through \(\pi\) radians around the y-axis.

The unitary matrix reads


\[\begin{split} Y = \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \end{split}\]

 










	
group pauli_z

	
Functions


	
inline constexpr auto pauli_z() noexcept


	Pauli_Z gate creator. 

This overload of the LibKet::gates::pauli_z() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::pauli_z();





 








	
class QPauli_Z : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Pauli_Z.hpp>

Pauli_Z gate class. 

The Pauli_Z gate class implements the quantum Pauli_Z gate for an arbitrary number of quantum bits.

The Pauli_Z gate is a single-qubit operation that maps the basis state \(\left|0\right>\) to \(\left|0\right>\) and \(\left|1\right>\) to \(-\left|1\right>\).

The Pauli_Z gate is a single-qubit rotation through \(\pi\) radians around the z-axis.

The unitary matrix reads


\[\begin{split} Z = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \end{split}\]

 










	
group identity

	
Functions


	
inline constexpr auto identity() noexcept


	Identity gate creator. 

This overload of the LibKet::gates::identity() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::identity( );





 








	
class QIdentity : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Identity.hpp>

Identity gate class. 

The Identity gate class implements the quantum identity gate for an arbitrary number of quantum bits

The identity gate is a single-qubit operation that leaves the basis state \(\left|0\right>\) and \(\left|1\right>\) unchanged.

The unitary matrix reads


\[\begin{split} I = \begin{pmatrix} 1 & 0\\ \ 0 & 1 \end{pmatrix} \end{split}\]

 










	
group hadamard

	
Functions


	
inline constexpr auto hadamard() noexcept


	Hadamard gate creator. 

This overload of the LibKet::gates::hadamard() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::hadamard();





 








	
class QHadamard : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Hadamard.hpp>

Hadamard gate class. 

The Hadamard gate class implements the quantum Hadamard gate for an arbitrary number of quantum bits.

The Hadamard gate is a single-qubit operation that maps the basis state \(\left|0\right>\) to \(\frac{\left|0\right>+\left|1\right>}{\sqrt{2}}\) and \(\left|1\right>\) to \(\frac{\left|0\right>-\left|1\right>}{\sqrt{2}}\), thus creating an equal superposition of the two basis states.

The unitary matrix reads


\[\begin{split} H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \end{split}\]

 










	
group s

	
Unnamed Group


	
UNARY_GATE_DEFAULT_IMPL(QS, s)


	\(S\) gate default implementation 








Functions


	
inline constexpr auto s() noexcept


	\(S\) gate creator 

This overload of the LibKet::gates::gate_s() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::s();





 








	
class QS : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_S.hpp>

\(S\) gate class 

The \(S\) gate class implements the quantum \(S\) gate gate for an arbitrary number of quantum bits.

The \(S\) gate is a single-qubit operation that maps the basis state \(\left|0\right>\) to \(\left|0\right>\) and \(\left|1\right>\) to \(i\left|1\right>\).

The \(S\) gate is also known as the phase gate or the Z90 gate, because it represents a 90-degree rotation around the z-axis.

The \(S\) gate is related to the \(T\) gate by the relationship \(S=T^{2}\).

The unitary matrix reads


\[\begin{split} S = \begin{pmatrix} 1 & 0\\ 0 & i \end{pmatrix} \end{split}\]

 










	
group sdag

	
Functions


	
inline constexpr auto sdag() noexcept


	\(S\)-dagger gate creator 

This overload of the LibKet::gates::gate_sdag() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::sdag();





 








	
class QSdag : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Sdag.hpp>

\(S\)-dagger gate class 

The \(S\)-dagger gate class implements the quantum \(S\)-dagger gate for an arbitrary number of quantum bits.

The \(S\)-dagger gate is a single-qubit operation that maps the basis state \(\left|0\right>\) to \(\left|0\right>\) and \(\left|1\right>\) to \(-i\left|1\right>\).

The \(S^{\dagger}\) gate is also defined as the conjugate transpose of the \(S\) gate.

The unitary matrix reads


\[\begin{split} S^{\dagger} = \begin{pmatrix} 1 & 0\\ \ 0 & -i \end{pmatrix} \end{split}\]

 










	
group rotate_x90

	
Functions


	
inline constexpr auto rotate_x90() noexcept


	Rotate_X90 gate creator. 

This overload of the LibKet::gate:rotate_x90() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::rotate_x90();





 








	
class QRotate_X90 : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Rotate_X90.hpp>

Rotate_X90 gate class. 

The Rotate_X90 gate class implements the quantum Rotate_X90 gate for an arbitrary number of quantum bits.

The Rotate_X90 gate is a single-qubit rotation through angle \(\frac{\pi}{2}\) (radians) around the x-axis.

The unitary matrix reads


\[\begin{split} R_{x}\left(\frac{\pi}{2}\right) = \begin{pmatrix} \frac{1}{\sqrt{2}} & -i\frac{1}{\sqrt{2}}\\ -i\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \end{split}\]

 










	
group rotate_mx90

	
Functions


	
inline constexpr auto rotate_mx90() noexcept


	Rotate_MX90 gate creator. 

This overload of the LibKet::gate:rotate_mx90() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::rotate_mx90();





 








	
class QRotate_MX90 : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Rotate_MX90.hpp>

Rotate_MX90 gate class. 

The Rotate_MX90 gate class implements the quantum Rotate_MX90 gate for an arbitrary number of quantum bits.

The Rotate_MX90 gate is a single-qubit rotation through angle \(-\frac{\pi}{2}\) (radians) around the x-axis.

The unitary matrix reads


\[\begin{split} R_{x}\left(-\frac{\pi}{2}\right) = \begin{pmatrix} \frac{1}{\sqrt{2}} & i\frac{1}{\sqrt{2}}\\ i\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \end{split}\]

 










	
group rotate_y90

	
Functions


	
inline constexpr auto rotate_y90() noexcept


	Rotate_Y90 gate creator. 

This overload of the LibKet::gate:rotate_y90() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::rotate_y90();





 








	
class QRotate_Y90 : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Rotate_Y90.hpp>

Rotate_Y90 gate class. 

The Rotate_Y90 gate class implements the quantum Rotate_Y90 gate for an arbitrary number of quantum bits.

The Rotate_Y90 gate is a single-qubit rotation through angle \(\frac{\pi}{2}\) (radians) around the y-axis.

The unitary matrix reads


\[\begin{split} R_{y}(\frac{\pi}{2}) = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \end{split}\]

 










	
group rotate_my90

	
Functions


	
inline constexpr auto rotate_my90() noexcept


	Rotate_MY90 gate creator. 

This overload of the LibKet::gate:rotate_my90() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::rotate_my90();





 








	
class QRotate_MY90 : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Rotate_MY90.hpp>

Rotate_MY90 gate class. 

The Rotate_MY90 gate class implements the quantum Rotate_MY90 gate for an arbitrary number of quantum bits.

The Rotate_MY90 gate is a single-qubit rotation through angle \(-\frac{\pi}{2}\) (radians) around the y-axis.

The unitary matrix reads


\[\begin{split} R_{y}\left(-\frac{\pi}{2}\right) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \end{split}\]

 










	
group sqrtnot

	
Functions


	
template<typename _tol = QConst_M_ZERO_t>
inline constexpr auto sqrt_not() noexcept


	Square-root-of-NOT gate creator. 

This overload of the LibKet::gates::sqrt_not() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto qcirc = gates::sqrt_not();





 








	
template<typename _tol = QConst_M_ZERO_t>
class QSqrt_Not : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Sqrt_Not.hpp>

Square-root-of-NOT gate class. 

The Quantum square root of NOT gate class implements the square root of NOT gate for an arbitrary number of qubits.

The square root of NOT gate (or square root of Pauli_X, \(\sqrt{X}\)) acts on a single qubit. It maps the basis state \(\left|0\right>\) to \(\frac{(1+i)\left|0\right> + (1-i)\left|1\right>}{2}\) and \(\left|1\right>\) to \(\frac{(1-i)\left|0\right> + (1+i)\left|1\right>}{2}\).

The unitary matrix reads


\[\begin{split} \sqrt{X} = \frac{1}{2} \begin{pmatrix} 1+i & 1-i\\ \ 1-i & 1+i \end{pmatrix} \end{split}\]

 










	
group t

	
Functions


	
inline constexpr auto t() noexcept


	\(T\) gate creator 

This overload of the LibKet::gate:gate_t() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::t();





 








	
class QT : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_T.hpp>

\(T\) gate class 

The \(T\) gate class implements the quantum \(T\) gate gate for an arbitrary number of quantum bits.

The \(T\) gate is a single-qubit operation that maps the basis state \(\left|0\right>\) to \(\left|0\right>\) and \(\left|1\right>\) to \(\exp(i\frac{\pi}{4})\left|1\right>\).

The \(T\) gate is related to the \(S\) gate by the relationship \(S=T^{2}\).

The unitary matrix reads


\[\begin{split} T = \begin{pmatrix} 1 & 0\\ 0 & \exp(i\frac{\pi}{4}) \end{pmatrix} \end{split}\]

 










	
group tdag

	
Functions


	
inline constexpr auto tdag() noexcept


	\(T\)-dagger gate creator 

This overload of the LibKet::gate:gate_tdag() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::tdag();





 








	
class QTdag : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Tdag.hpp>

\(T\)-dagger gate class 

The \(T\)-dagger gate class implements the quantum \(T\)-dagger gate for an arbitrary number of quantum bits.

The \(T\)-dagger is a single-qubit operation that maps the basis state \(\left|0\right>\) to \(\left|0\right>\) and \(\left|1\right>\) to \(\exp(-i\frac{\pi}{4})\left|1\right>\).

The \(T^{\dagger}\) gate is also defined as the conjugate transpose of the \(T\) gate

The unitary matrix reads


\[\begin{split} T^{\dagger} = \begin{pmatrix} 1 & 0 \\ 0 & \exp(-i\frac{\pi}{4}) \end{pmatrix} \end{split}\]

 










	
group barrier

	
Functions


	
inline constexpr auto barrier() noexcept


	Barrier gate creator. 

This overload of the LibKet::gates::barrier() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr1 = gates::hadamard( gates::barrier() );







If the so-defined expression is used as sub-expression then the synchronization gate ensures that no optimization takes place. In the following example, the double application of the Hadamard gate would be eliminated without the barrier inbetween the two gates

auto expr2 = expr1( gates::hadamard() );








	Returns

	UnaryQGate object 












	
class QBarrier : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Barrier.hpp>

Barrier gate class. 

The quantum synchronization gate ensures that quantum expression optimization does not proceed beyond the synchronization barrier.

The following code creates a quantum expression consisting of three Hadamard gates applied consecutively, which by the built-in optimization of quantum expressions yields a single Hadamard gate

auto expr = gates::hadamard( gates::hadamard( gates::hadamard() ) ); // same as
auto expr = gates::hadamard();







To prevent the built-in optimization from taking place, the quantum synchronization gate can be inserted between the gates

auto expr = gates::hadamard( gates::barrier ( gates::hadamard( gates::barrier ( gates::hadamard() ) ) ) );





 










	
group u2

	
	
template<typename _functor, typename _tol = QConst_M_ZERO_t>
class QUnitary2 : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Unitary2.hpp>

\(2\times 2\) unitary gate class 

The \(2\times2\) unitary gate accepts an arbitrary \(2\times 2\) unitary matrix \(U\) as input and performs the ZYZ decomposition of \(U\)


\[ U = \exp(i\Phi) R_z(\alpha)R_y(\beta)R_z(\gamma) \]



with \(\Phi,\alpha,\beta,\gamma\) are rotation angles. 










	
group u2dag

	
	
template<typename _functor, typename _tol = QConst_M_ZERO_t>
class QUnitary2dag


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Unitary2.hpp>

\(2\times 2\) unitary gate (conjugate transpose) class 

The \(2\times2\) unitary gate (conjugate transpose) accepts an arbitrary \(2\times 2\) unitary matrix \(U\) as input and performs the ZYZ decomposition of the conjugate transpose of \(U\)


\[ U^\dagger = \exp(i\Phi) R_z(-\gamma)R_y(-\beta)R_z(-\alpha) \]



with \(\Phi,\alpha,\beta,\gamma\) are rotation angles. 











Parameterized Single Qubit Gates


	
group rotate_x

	
Functions


	
template<typename _tol = QConst_M_ZERO_t, typename _angle>
inline constexpr auto rotate_x(_angle) noexcept


	Rotate_X gate creator. 

This overload of the LibKet::gates::rotate_x() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::rotate_x();





 








	
template<typename _angle, typename _tol = QConst_M_ZERO_t>
class QRotate_X : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Rotate_X.hpp>

Rotate_X gate class. 

The Rotate_X gate class implements the quantum Rotate_X gate for an arbitrary number of quantum bits.

The Rotate_X gate is a single-qubit rotation through angle \(\theta\) (radians) around the x-axis.

The unitary matrix reads


\[\begin{split} R_{x}(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2})\\ -i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} \end{split}\]

 










	
group rotate_xdag

	
Functions


	
template<typename _tol = QConst_M_ZERO_t, typename _angle>
inline constexpr auto rotate_xdag(_angle) noexcept


	Rotate_Xdag gate creator. 

This overload of the LibKet::gates::rotate_xdag() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::rotate_xdag();





 








	
template<typename _angle, typename _tol = QConst_M_ZERO_t>
class QRotate_Xdag


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Rotate_X.hpp>

Rotate_Xdag gate class. 

The Rotate_Xdag gate class implements the inverse quantum Rotate_X gate for an arbitrary number of quantum bits.

The \(R_{x}^{\dagger}(\theta)\) gate is defined as the conjugate transpose of the Rotate_X gate.

The unitary matrix reads


\[\begin{split} R_{x}^{\dagger}(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & i\sin(\frac{\theta}{2})\\ i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} \end{split}\]

 










	
group rotate_y

	
Functions


	
template<typename _tol = QConst_M_ZERO_t, typename _angle>
inline constexpr auto rotate_y(_angle) noexcept


	Rotate_Y gate creator. 

This overload of the LibKet::gates::rotate_y() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::rotate_y();





 








	
template<typename _angle, typename _tol = QConst_M_ZERO_t>
class QRotate_Y : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Rotate_Y.hpp>

Rotate_Y gate class. 

The Rotate_Y gate class implements the quantum Rotate_Y gate for an arbitrary number of quantum bits.

The Rotate_Y gate is a single-qubit rotation through angle \(\theta\) (radians) around the y-axis.

The unitary matrix reads


\[\begin{split} R_{y}(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2})\\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} \end{split}\]

 










	
group rotate_ydag

	
Functions


	
template<typename _tol = QConst_M_ZERO_t, typename _angle>
inline constexpr auto rotate_ydag(_angle) noexcept


	Rotate_Ydag gate creator. 

This overload of the LibKet::gates::rotate_ydag() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::rotate_ydag();





 








	
template<typename _angle, typename _tol = QConst_M_ZERO_t>
class QRotate_Ydag


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Rotate_Y.hpp>

Rotate_Ydag gate class. 

The Rotate_Ydag gate class implements the inverse quantum Rotate_Y gate for an arbitrary number of quantum bits.

The \(R_{y}^{\dagger}(\theta)\) gate is defined as the conjugate transpose of the Rotate_Y gate.

The unitary matrix reads


\[\begin{split} R_{y}^{\dagger}(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & \sin(\frac{\theta}{2})\\ -\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} \end{split}\]

 










	
group rotate_z

	
Functions


	
template<typename _tol = QConst_M_ZERO_t, typename _angle>
inline constexpr auto rotate_z(_angle) noexcept


	Rotate_Z gate creator. 

This overload of the LibKet::gates::rotate_z() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::rotate_z();





 








	
template<typename _angle, typename _tol = QConst_M_ZERO_t>
class QRotate_Z : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Rotate_Z.hpp>

Rotate_Z gate class. 

The Rotate_Z gate class implements the quantum Rotate_Z gate for an arbitrary number of quantum bits.

The Rotate_Z gate is a single-qubit rotation through angle \(\theta\) (radians) around the z-axis.

The unitary matrix reads


\[\begin{split} R_{z}(\theta) = \begin{pmatrix} \exp(-i\frac{\theta}{2}) & 0\\ 0 & \exp(i\frac{\theta}{2}) \end{pmatrix} \end{split}\]

 










	
group rotate_zdag

	
Functions


	
template<typename _tol = QConst_M_ZERO_t, typename _angle>
inline constexpr auto rotate_zdag(_angle) noexcept


	Rotate_Zdag gate creator. 

This overload of the LibKet::gates::rotate_zdag() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::rotate_zdag();





 








	
template<typename _angle, typename _tol = QConst_M_ZERO_t>
class QRotate_Zdag


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Rotate_Z.hpp>

Rotate_Zdag gate class. 

The Rotate_Zdag gate class implements the inverse quantum Rotate_Z gate for an arbitrary number of quantum bits.

The \(R_{z}^{\dagger}(\theta) \) gate is defined as the conjugate transpose of the Rotate_Z gate.

The unitary matrix reads


\[\begin{split} R_{z}^{\dagger}(\theta)= \begin{pmatrix} \exp(i\frac{\theta}{2}) & 0\\ 0 & \exp(-i\frac{\theta}{2}) \end{pmatrix} \end{split}\]

 










	
group phase

	
Unnamed Group


	
UNARY_GATE_DEFAULT_IMPL_AT(QPhase, phase)


	Phase gate default implementation. 








Functions


	
template<typename _tol = QConst_M_ZERO_t, typename _angle>
inline constexpr auto phase(_angle) noexcept


	Phase gate creator. 

This overload of the LibKet::gates::phase() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::phase();





 








	
template<typename _angle, typename _tol = QConst_M_ZERO_t>
class QPhase : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Phase.hpp>

PHASE gate class. 

The PHASE gate class implements the quantum phase gate for an arbitrary number of quantum bits.

The PHASE gate is a single-qubit operation that maps the basis state \(\left|0\right>\) to \(\left|0\right>\) and \(\left|1\right>\) to \(\exp(i\theta)\left|1\right>\).

The unitary matrix reads


\[\begin{split} \text{PHASE} = \begin{pmatrix} 1 & 0\\ 0 & \exp(i\theta) \end{pmatrix} \end{split}\]

 










	
group phasedag

	
Functions


	
template<typename _tol = QConst_M_ZERO_t, typename _angle>
inline constexpr auto phasedag(_angle) noexcept


	Phasedag gate creator. 

This overload of the LibKet::gates::phasedag() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::phasedag();





 








	
template<typename _angle, typename _tol = QConst_M_ZERO_t>
class QPhasedag


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Phase.hpp>

PHASEdag gate class. 

The PHASEdag gate class implements the inverse quantum phase gate for an arbitrary number of quantum bits.

The PHASEdag gate is a single-qubit operation that maps the basis state \(\left|0\right>\) to \(\left|0\right>\) and \(\left|1\right>\) to \(\exp(-i\theta)\left|1\right>\).

The unitary matrix reads


\[\begin{split} \text{PHASE}^{\dagger} = \begin{pmatrix} 1 & 0\\ 0 & \exp(-i\theta) \end{pmatrix} \end{split}\]

 











Two Qubit Gates


	
group cnot

	
Functions


	
inline constexpr auto cnot() noexcept


	CNOT (controlled-X) gate creator. 

This overload of the LibKet::gates::CNOT() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::cnot();





 








	
class QCNOT : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_CNOT.hpp>

CNOT (controlled-X) gate class. 

The CNOT (controlled-X) gate class implements the quantum CNOT gate for an arbitrary number of quantum bits.

The CNOT (controlled-X) gate is a two-qubit operation, where the first qubit is usually referred to as the control qubit and the second qubit as the target qubit. It maps the basis state \(\left|00\right>\) to \(\left|00\right>\), \(\left|01\right>\) to \(\left|01\right>\), \(\left|10\right>\) to \(\left|11\right>\) and \(\left|11\right>\) to \(\left|10\right>\).

The CNOT (controlled-X) gates leaves the control qubit unchanged and performs a Pauli-X gate on the target qubit only when the control qubit is in state \(\left|1\right>\).

The unitary matrix reads


\[\begin{split} \text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{pmatrix} \end{split}\]

 










	
group cy

	
Functions


	
inline constexpr auto cy() noexcept


	CY (controlled-Y) gate creator. 

This overload of the LibKet::gates::cy() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::cy();





 








	
class QCY : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_CY.hpp>

CY (controlled-Y) gate class. 

The CY (controlled-Y) gate class implements the quantum controlled-Y gate for an arbitrary number of quantum bits

The CY (controlled-Y) gate is a two-qubit operation, where the first qubit is usually referred to as the control qubit and the second qubit as the target qubit. It maps the basis state \(\left|00\right>\) to \(\left|00\right>\), \(\left|01\right>\) to \(\left|01\right>\), \(\left|10\right>\) to \(i\left|11\right>\) and \(\left|11\right>\) to \(-i\left|10\right>\).

The CY (controlled-Y) gates leaves the control qubit unchanged and performs a Pauli-Y gate on the target qubit only when the control qubit is in state \(\left|1\right>\).

The unitary matrix reads


\[\begin{split} \text{CY} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & -i\\ 0 & 0 & i & 0 \end{pmatrix} \end{split}\]

 










	
group cz

	
Functions


	
inline constexpr auto cz() noexcept


	CZ (controlled-Z) gate creator. 

This overload of the LibKet::gates::cz() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::cz();





 








	
class QCZ : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_CZ.hpp>

CZ (controlled-Z) gate class. 

The CZ (controlled-Z) gate class implements the quantum controlled-Z gate for an arbitrary number of quantum bits

The CZ (controlled-Z) gate is a two-qubit operation, where the first qubit is usually referred to as the control qubit and the second qubit as the target qubit. It maps the basis state \(\left|00\right>\) to \(\left|00\right>\), \(\left|01\right>\) to \(\left|01\right>\), \(\left|10\right>\) to \(\left|10\right>\) and \(\left|11\right>\) to \(-\left|11\right>\).

The CZ (controlled-Z) gates leaves the control qubit unchanged and performs a Pauli-Z gate on the target qubit only when the control qubit is in state \(\left|1\right>\).

The unitary matrix reads


\[\begin{split} \text{CZ} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix} \end{split}\]

 










	
group swap

	
Functions


	
inline constexpr auto swap() noexcept


	Swap gate creator. 

This overload of the LibKet::gate:swap() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::swap();





 








	
class QSwap : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Swap.hpp>

Swap gate class. 

The LibKet SWAP gate class implements the quantum swap gate for an arbitrary number of quantum bits.

The SWAP gate is a two-qubit operation that maps the basis state \(\left|00\right>\) to \(\left|00\right>\), \(\left|01\right>\) to \(\left|10\right>\), \(\left|10\right>\) to \(\left|01\right>\) and \(\left|11\right>\) to \(\left|11\right>\).

The SWAP gate swaps the state of the two qubits involved in the operation.

The unitary matrix reads


\[\begin{split} \text{SWAP} = \begin{pmatrix} 1 & 0 & 0 & 0\\ \ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \end{split}\]

 










	
group sqrtswap

	
Functions


	
inline constexpr auto sqrt_swap() noexcept


	Square-root-of-swap gate creator. 

This overload of the LibKet::gate:sqrt_swap() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::sqrt_swap();





 








	
class QSqrt_Swap : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_Sqrt_Swap.hpp>

Swap gate class. 

The Square root of SWAP gate class implements the quantum square root of SWAP gate for an arbitrary number of quantum bits.

The square root of SWAP gate (or square root of SWAP, \(\sqrt{\text{SWAP}}\)) is two qubit operation which implements the square root of SWAP gate.

The unitary matrix reads


\[\begin{split} \sqrt{\text{SWAP}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1+i}{2} & \frac{1-i}{2} & 0 \\ 0 & \frac{1-i}{2} & \frac{1+i}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{split}\]

 










	
group cu2

	
Unnamed Group


	
BINARY_GATE_DEFAULT_IMPL_FTOR(QCUnitary2, cunitary2)


	\(2\times 2\) controlled unitary gate default implementation 








Functions


	
template<typename _functor, typename _tol = QConst_M_ZERO_t>
inline constexpr auto cunitary2() noexcept


	\(2\times 2\) controlled unitary gate creator 

This overload of the LibKet::gates::cunitary2() function can be used as terminal, i.e. the inner-most gate in a quantum expression

struct CU2_ftor {
  inline auto operator()() const noexcept
  {
    return arma::vec{ 1.0/sqrt(2.0), -1.0/sqrt(2.0),                               
                      1.0/sqrt(2.0),  1.0/sqrt(2.0)};
  }
};

auto expr = gates::cunitary2<CU2_ftor>();





 








	
template<typename _functor, typename _tol = QConst_M_ZERO_t>
class QCUnitary2 : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_CUnitary2.hpp>

\(2\times 2\) controlled unitary gate class 

The \(2\times2\) controlled unitary gate accepts an arbitrary \(2\times 2\) unitary matrix \(U\) as input and performs the controlled ZYZ decomposition of \(U\)


\[ U = \exp(i\Phi) R_z(\alpha)R_y(\beta)R_z(\gamma) \]



with \(\Phi,\alpha,\beta,\gamma\) are rotation angles. 










	
group cu2dag

	
Functions


	
template<typename _functor, typename _tol = QConst_M_ZERO_t>
inline constexpr auto cunitary2dag() noexcept


	\(2\times 2\) controlled unitary gate (conjugate transpose) creator 

This overload of the LibKet::gates::cunitary2dag() function can be used as terminal, i.e. the inner-most gate in a quantum expression

struct CU2_ftor {
inline auto operator()() const noexcept
 return arma::vec{ 1.0/sqrt(2.0), -1.0/sqrt(2.0),                               
                   1.0/sqrt(2.0),  1.0/sqrt(2.0)};
};

auto expr = gates::cunitary2dag<CU2_ftor>();





 








	
template<typename _functor, typename _tol = QConst_M_ZERO_t>
class QCUnitary2dag


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_CUnitary2.hpp>

\(2\times 2\) controlled unitary gate (conjugate transpose) class 

The \(2\times2\) controlled unitary gate (conjugate transpose) accepts an arbitrary \(2\times 2\) unitary matrix \(U\) as input and performs the ZYZ decomposition of the conjugate transpose of \(U\)


\[ U^\dagger = \exp(i\Phi) R_z(-\gamma)R_y(-\beta)R_z(-\alpha) \]



with \(\Phi,\alpha,\beta,\gamma\) are rotation angles. 











Parameterized Two Qubit Gates


	
group cphase

	
Functions


	
template<typename _tol = QConst_M_ZERO_t, typename _angle>
inline constexpr auto cphase(_angle) noexcept


	CPHASE (controlled phase shift) gate creator. 

This overload of the LibKet::gates::cphase() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::cphase();





 








	
template<typename _angle, typename _tol = QConst_M_ZERO_t>
class QCPhase : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_CPhase.hpp>

CPHASE (controlled phase shift) gate class. 

The CPHASE (controlled phase shift) gate class implements the quantum controlled phase shift gate for an arbitrary number of quantum bits

The CPHASE (controlled phase shift) gate is a two-qubit operation, where the first qubit is usually referred to as the control qubit and the second qubit as the target qubit. It maps the basis state \(\left|00\right>\) to \(\left|00\right>\), \(\left|01\right>\) to \(\left|01\right>\), \(\left|10\right>\) to \(\left|10\right>\) and \(\left|11\right>\) to \(\exp(i\theta)\left|11\right>\).

The CPHASE (controlled phase shift) gates leaves the control qubit unchanged and performs a Phase gate on the target qubit only when the control qubit is in state \(\left|1\right>\).

The unitary matrix reads


\[\begin{split} \text{CPHASE} = \begin{pmatrix} 1 & 0 & 0 & 0\\ \ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & \exp(i\theta) \end{pmatrix} \end{split}\]

 










	
group cphasedag

	
Functions


	
template<typename _tol = QConst_M_ZERO_t, typename _angle>
inline constexpr auto cphasedag(_angle) noexcept


	CPHASEDAG (inverse controlled phase shift) gate creator. 

This overload of the LibKet::gates::cphasedag() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::cphasedag();





 








	
template<typename _angle, typename _tol = QConst_M_ZERO_t>
class QCPhasedag


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_CPhase.hpp>

CPHASEDAG (inverse controlled phase shift) gate class. 

The CPHASEDAG (inverse controlled phase shift) gate class implements the quantum controlled phase shift gate for an arbitrary number of quantum bits

The CPHASEDAG (inverse controlled phase shift) gate is a two-qubit operation, where the first qubit is usually referred to as the control qubit and the second qubit as the target qubit. It maps the basis state \(\left|00\right>\) to \(\left|00\right>\), \(\left|01\right>\) to \(\left|01\right>\), \(\left|10\right>\) to \(\left|10\right>\) and \(\left|11\right>\) to \(\exp(-i\theta)\left|11\right>\).

The \(\text{CPHASE}^{\dagger}\) (inverse controlled phase shift) gate is also defined as the conjugate transpose of the CPHASE gate.

The unitary matrix reads


\[\begin{split} \text{CPHASE}^{\dagger} = \begin{pmatrix} 1 & 0 & 0 & 0\\ \ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & \exp(-i\theta) \end{pmatrix} \end{split}\]

 










	
group cphasek

	
Functions


	
template<std::size_t k, typename _tol = QConst_M_ZERO_t>
inline constexpr auto cphasek() noexcept


	CPHASEK (controlled phase shift with \(\pi/2^k\) angle) gate creator. 

This overload of the LibKet::gates::cphasek() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::cphasek();





 








	
template<std::size_t k, typename _tol = QConst_M_ZERO_t>
class QCPhaseK : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_CPhaseK.hpp>

CPHASEK (controlled phase shift with \(\pi/2^k\) angle) gate class. 

The CPHASEK (controlled phase shift with \(\pi/2^k\) angle) gate class implements the quantum controlled phase shift with \(\pi/2^k\) angle gate for an arbitrary number of quantum bits

The CPHASEK (controlled phase shift with \(\pi/2^k\) angle) gate is a two-qubit operation, where the first qubit is usually referred to as the control qubit and the second qubit as the target qubit. It maps the basis state \(\left|00\right>\) to \(\left|00\right>\), \(\left|01\right>\) to \(\left|01\right>\), \(\left|10\right>\) to \(\left|10\right>\) and \(\left|11\right>\) to \(\exp(\frac{2 \pi i}{2^{k}})\left|11\right>\).

The CPHASEK (controlled phase shift with \(\pi/2^k\) angle) gates leaves the control qubit unchanged and performs a Phase gate on the target qubit only when the control qubit is in state \(\left|1\right>\).

The unitary matrix reads


\[\begin{split} \text{CPHASEK} = \begin{pmatrix} 1 & 0 & 0 & 0\\ \ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & \exp(\frac{2 \pi i}{2^{k}}) \end{pmatrix} \end{split}\]

 










	
group cphasekdag

	
Functions


	
template<std::size_t k, typename _tol = QConst_M_ZERO_t>
inline constexpr auto cphasekdag() noexcept


	CPHASEKDAG (inverse controlled phase shift with \(\pi/2^k\) angle) gate creator. 

This overload of the LibKet::gates::cphasekdag() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::cphasekdag();





 








	
template<std::size_t k, typename _tol = QConst_M_ZERO_t>
class QCPhaseKdag


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_CPhaseK.hpp>

CPHASEKDAG (inverse controlled phase shift with \(\pi/2^k\) angle) gate class. 

The CPHASEKDAG (inverse controlled phase shift with \(\pi/2^k\) angle) gate class implements the quantum controlled phase shift with \(\pi/2^k\) angle gate for an arbitrary number of quantum bits

The CPHASEKDAG (inverse controlled phase shift with \(\pi/2^k\) angle) gate is a two-qubit operation, where the first qubit is usually referred to as the control qubit and the second qubit as the target qubit. It maps the basis state \(\left|00\right>\) to \(\left|00\right>\), \(\left|01\right>\) to \(\left|01\right>\), \(\left|10\right>\) to \(\left|10\right>\) and \(\left|11\right>\) to \(\exp(-\frac{2 \pi i}{2^{k}})\left|11\right>\).

The CPHASEKDAG (inverse controlled phase shift with \(\pi/2^k\) angle) gates leaves the control qubit unchanged and performs a Phase gate on the target qubit only when the control qubit is in state \(\left|1\right>\).

The \(\text{CPHASEK}^{\dagger}\) (inverse controlled phase shift with \(\pi/2^k\) angle) is also defined as the conjugate transpose of the CPHASEK gate.

The unitary matrix reads


\[\begin{split} \text{CPHASEK}^{\dagger} = \begin{pmatrix} 1 & 0 & 0 & 0\\ \ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & \exp(-\frac{2 \pi i}{2^{k}}) \end{pmatrix} \end{split}\]

 











Three Qubit Gates


	
group ccnot

	
Functions


	
inline constexpr auto ccnot() noexcept


	CCNOT (Toffoli) gate creator. 

This overload of the LibKet::gates::ccnot() function can be used as terminal, i.e. the inner-most gate in a quantum expression

auto expr = gates::ccnot();





 








	
class QCCNOT : public LibKet::gates::QGate


	
#include </home/docs/checkouts/readthedocs.org/user_builds/libket/checkouts/latest/libket/gates/QGate_CCNOT.hpp>

CCNOT (Toffoli) gate class. 

The CCNOT (Toffoli) gate class implements the quantum CCNOT (Toffoli) gate for an arbitrary number of quantum bits

The CCNOT (Toffoli) gate is a three-qubit operation, where the first qubit and the second qubit are usually referred to as the control qubits and the third qubit as the target qubit. It maps the basis state \(\left|000\right>\) to \(\left|000\right>\), \(\left|001\right>\) to \(\left|001\right>\), \(\left|010\right>\) to \(\left|010\right>\), \(\left|011\right>\) to \(\left|011\right>\), \(\left|100\right>\) to \(\left|100\right>\), \(\left|101\right>\) to \(\left|101\right>\), \(\left|110\right>\) to \(\left|111\right>\) and \(\left|110\right>\) to \(\left|110\right>\)

The CCNOT (Toffoli) gates leaves the control qubit unchanged and performs a Pauli-X gate on the target qubit only when both the control qubits are in state \(\left|1\right>\).

The unitary matrix reads


\[\begin{split} \text{CCNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \end{split}\]

 












Circuits


Quantum Fourier Transform

The code below can be used to apply the Quantum Fourier Transform on qubits 0 to n.

auto expr = qft(range<0,n>(init()));





This generates the following circuit for \(n = 5\):

[image: Figure made with TikZ]

This image shows the circuit created with the above line of code


Inverse QFT is called using function qftdag().



AllSwap

The LibKet AllSwap circuit swaps all qubits in a given selection. The LibKet AllSwap circuit can be applied to the first n qubits of your register as follows:

auto expr = allswap(range<0,n>(init()));





This creates the following circuit for n = 5:

[image: Figure made with TikZ]

This image shows the circuit created with the above line of code




Arbitrary Control

The Arbitrary control circuit allows controlled unitary qubit gates (e.g. cx, cy, cz, cphase, etc) to be controlled by multiple qubits. For every \(N\) control qubits, \(N-1\) ancilla qubits are needed. The following code snippet constructs a cnot gate controlled by qubits 0 to 3.

auto expr = arb_ctrl<>(cx(),              //Control gate
                       sel<0,1,2,3>(),    //Control qubits
                       sel<7>(),          //Target qubits
                       sel<4,5,6>(init()) //Ancilla qubits
                      );





This generates the following circuit:

[image: Figure made with TikZ]

Arbitrary Control circuit for cnot gate




Quantum Phase Estimation



Oracle




Devices


Atos QLM


This class executes quantum circuits on the Atos Quantum Learning
Machine (QLM) simulator. It adopts Atos’ AQASM quantum assembly
language: Atos Website [https://atos.net/en/solutions/quantum-learning-machine]




Available QDevices in LibKet:

atos_qlm_feynman_simulator  /**< Atos QLM Feynman integral path simulator          */
atos_qlm_linalg_simulator   /**< Atos QLM Linear algebra-based  simulator          */
atos_qlm_stabs_simulator    /**< Atos QLM Stabilizer-based simulator               */
atos_qlm_mps_simulator      /**< Atos QLM Matrix product state-based simulator     */







Cirq


This class executes quantum circuits locally on the Cirq simulator, a Python software library for writing, manipulating, and optimizing quantum circuits, and then running them on quantum computers and quantum simulators. It adopts the Cirq quantum assembly language. Cirq provides useful features such as dealing with today’s noisy intermediate-scale quantum computers: Cirq Website [https://quantumai.google/cirq]




Available QDevices in LibKet:

cirq_simulator             /**< Cirq simulator                                    */
cirq_simulator_simulator   /**< Cirq simulator (name demangling)                  */
cirq_bristlecone_simulator /**< Cirq Bristlecone simulator                        */
cirq_foxtail_simulator     /**< Cirq Foxtail simulator                            */
cirq_sycamore_simulator    /**< Cirq Sycamore simulator                           */
cirq_sycamore23_simulator  /**< Cirq Sycamore23 simulator                         */







Qiskit

Qiskit is another python basesd open-source SDK for working with quantum computers and simulators at the level of pulses, circuits and application modules: Qiskit Website [https://qiskit.org/]

Available QDevices in LibKet:

qiskit_almaden_simulator      /**< Qiskit  20-qubit local simulator                  */
qiskit_armonk_simulator       /**< Qiskit   1-qubit local simulator                  */
qiskit_athens_simulator       /**< Qiskit   5-qubit local simulator                  */
qiskit_belem_simulator        /**< Qiskit   5-qubit local simulator                  */
qiskit_boeblingen_simulator   /**< Qiskit  20-qubit local simulator                  */
qiskit_bogota_simulator       /**< Qiskit   5-qubit local simulator                  */
qiskit_brooklyn_simulator     /**< Qiskit  65-qubit local simulator                  */
qiskit_burlington_simulator   /**< Qiskit   5-qubit local simulator                  */
qiskit_cairo_simulator        /**< Qiskit  27-qubit local simulator                  */
qiskit_cambridge_simulator    /**< Qiskit  28-qubit local simulator                  */
qiskit_casablanca_simulator   /**< Qiskit   7-qubit local simulator                  */
qiskit_dublin_simulator       /**< Qiskit  27-qubit local simulator                  */
qiskit_essex_simulator        /**< Qiskit   5-qubit local simulator                  */
qiskit_guadalupe_simulator    /**< Qiskit  16-qubit local simulator                  */
qiskit_hanoi_simulator        /**< Qiskit  27-qubit local simulator                  */
qiskit_jakarta_simulator      /**< Qiskit   7-qubit local simulator                  */
qiskit_johannesburg_simulator /**< Qiskit  20-qubit local simulator                  */
qiskit_kolkata_simulator      /**< Qiskit  27-qubit local simulator                  */
qiskit_lagos_simulator        /**< Qiskit   7-qubit local simulator                  */
qiskit_lima_simulator         /**< Qiskit   5-qubit local simulator                  */
qiskit_london_simulator       /**< Qiskit   5-qubit local simulator                  */
qiskit_manhattan_simulator    /**< Qiskit  65-qubit local simulator                  */
qiskit_manila_simulator       /**< Qiskit   5-qubit local simulator                  */
qiskit_melbourne_simulator    /**< Qiskit  15-qubit local simulator                  */
qiskit_montreal_simulator     /**< Qiskit  27-qubit local simulator                  */
qiskit_mumbai_simulator       /**< Qiskit  27-qubit local simulator                  */
qiskit_nairobi_simulator      /**< Qiskit   7-qubit local simulator                  */
qiskit_ourense_simulator      /**< Qiskit   5-qubit local simulator                  */
qiskit_paris_simulator        /**< Qiskit  27-qubit local simulator                  */
qiskit_peekskill_simulator    /**< Qiskit  27-qubit local simulator                  */
qiskit_poughkeepsie_simulator /**< Qiskit  20-qubit local simulator                  */
qiskit_quito_simulator        /**< Qiskit   5-qubit local simulator                  */
qiskit_rochester_simulator    /**< Qiskit  53-qubit local simulator                  */
qiskit_rome_simulator         /**< Qiskit   5-qubit local simulator                  */
qiskit_rueschlikon_simulator  /**< Qiskit  16-qubit local simulator                  */
qiskit_santiago_simulator     /**< Qiskit   5-qubit local simulator                  */
qiskit_singapore_simulator    /**< Qiskit  20-qubit local simulator                  */
qiskit_sydney_simulator       /**< Qiskit  27-qubit local simulator                  */
qiskit_tenerife_simulator     /**< Qiskit   5-qubit local simulator                  */
qiskit_tokyo_simulator        /**< Qiskit  20-qubit local simulator                  */
qiskit_toronto_simulator      /**< Qiskit  27-qubit local simulator                  */
qiskit_valencia_simulator     /**< Qiskit   5-qubit local simulator                  */
qiskit_vigo_simulator         /**< Qiskit   5-qubit local simulator                  */
qiskit_yorktown_simulator     /**< Qiskit   5-qubit local simulator                  */
qiskit_washington_simulator   /**< Qiskit 127-qubit local simulator                  */
qiskit_perth_simulator        /**< Qiskit   7-qubit local simulator                  */

qiskit_pulse_simulator       /**< Qiskit pulse local simulator                      */
qiskit_qasm_simulator        /**< Qiskit universal local simulator                  */
qiskit_statevector_simulator /**< Qiskit statevector local simulator                */
qiskit_unitary_simulator     /**< Qiskit density matrix local simulator             */

qiskit_aer_density_matrix_simulator       /**< Qiskit Aer density matrix local simulator         */
qiskit_aer_extended_stabilizer_simulator  /**< Qiskit Aer extended stabilizer local simulator    */
qiskit_aer_matrix_product_state_simulator /**< Qiskit Aer matrix product state local simulator   */
qiskit_aer_simulator                      /**< Qiskit Aer local simulator                        */
qiskit_aer_stabilizer_simulator           /**< Qiskit Aer stabilizer local simulator             */
qiskit_aer_statevector_simulator          /**< Qiskit Aer statevector local simulator            */
qiskit_aer_superop_simulator              /**< Qiskit Aer superop local simulator                */
qiskit_aer_unitary_simulator              /**< Qiskit Aer unitary local simulator                */







IBMQ

This class executes quantum circuits remotely on physical quantum devices made accessible through IBM’s Quantum Experience cloud services. It adopts the OpenQASM v2.0 quantum assembly language: IBMQ Website [https://quantum-computing.ibm.com/]

Available QDevices in LibKet:

// IBM-Q Experience
ibmq_almaden_simulator      /**< IBM-Q  20-qubit remote simulator                  */
ibmq_armonk_simulator       /**< IBM-Q   1-qubit remote simulator                  */
ibmq_athens_simulator       /**< IBM-Q   5-qubit remote simulator                  */
ibmq_belem_simulator        /**< IBM-Q   5-qubit remote simulator                  */
ibmq_boeblingen_simulator   /**< IBM-Q  20-qubit remote simulator                  */
ibmq_bogota_simulator       /**< IBM-Q   5-qubit remote simulator                  */
ibmq_brooklyn_simulator     /**< IBM-Q  65-qubit remote simulator                  */
ibmq_burlington_simulator   /**< IBM-Q   5-qubit remote simulator                  */
ibmq_cairo_simulator        /**< IBM-Q  27-qubit remote simulator                  */
ibmq_cambridge_simulator    /**< IBM-Q  28-qubit remote simulator                  */
ibmq_casablanca_simulator   /**< IBM-Q   7-qubit remote simulator                  */
ibmq_dublin_simulator       /**< IBM-Q  27-qubit remote simulator                  */
ibmq_essex_simulator        /**< IBM-Q   5-qubit remote simulator                  */
ibmq_guadalupe_simulator    /**< IBM-Q  16-qubit remote simulator                  */
ibmq_hanoi_simulator        /**< IBM-Q  27-qubit remote simulator                  */
ibmq_jakarta_simulator      /**< IBM-Q   7-qubit remote simulator                  */
ibmq_johannesburg_simulator /**< IBM-Q  20-qubit remote simulator                  */
ibmq_kolkata_simulator      /**< IBM-Q  27-qubit remote simulator                  */
ibmq_lagos_simulator        /**< IBM-Q   7-qubit remote simulator                  */
ibmq_lima_simulator         /**< IBM-Q   5-qubit remote simulator                  */
ibmq_london_simulator       /**< IBM-Q   5-qubit remote simulator                  */
ibmq_manhattan_simulator    /**< IBM-Q  65-qubit remote simulator                  */
ibmq_manila_simulator       /**< IBM-Q   5-qubit remote simulator                  */
ibmq_melbourne_simulator    /**< IBM-Q  15-qubit remote simulator                  */
ibmq_montreal_simulator     /**< IBM-Q  27-qubit remote simulator                  */
ibmq_mumbai_simulator       /**< IBM-Q  27-qubit remote simulator                  */
ibmq_nairobi_simulator      /**< IBM-Q   7-qubit remote simulator                  */
ibmq_ourense_simulator      /**< IBM-Q   5-qubit remote simulator                  */
ibmq_paris_simulator        /**< IBM-Q  27-qubit remote simulator                  */
ibmq_peekskill_simulator    /**< IBM-Q  27-qubit remote simulator                  */
ibmq_poughkeepsie_simulator /**< IBM-Q  20-qubit remote simulator                  */
ibmq_quito_simulator        /**< IBM-Q   5-qubit remote simulator                  */
ibmq_rochester_simulator    /**< IBM-Q  53-qubit remote simulator                  */
ibmq_rome_simulator         /**< IBM-Q   5-qubit remote simulator                  */
ibmq_rueschlikon_simulator  /**< IBM-Q  16-qubit remote simulator                  */
ibmq_santiago_simulator     /**< IBM-Q   5-qubit remote simulator                  */
ibmq_singapore_simulator    /**< IBM-Q  20-qubit remote simulator                  */
ibmq_sydney_simulator       /**< IBM-Q  27-qubit remote simulator                  */
ibmq_tenerife_simulator     /**< IBM-Q   5-qubit remote simulator                  */
ibmq_tokyo_simulator        /**< IBM-Q  20-qubit remote simulator                  */
ibmq_toronto_simulator      /**< IBM-Q  27-qubit remote simulator                  */
ibmq_valencia_simulator     /**< IBM-Q   5-qubit remote simulator                  */
ibmq_vigo_simulator         /**< IBM-Q   5-qubit remote simulator                  */
ibmq_yorktown_simulator     /**< IBM-Q   5-qubit remote simulator                  */
ibmq_washington_simulator   /**< IBM-Q 127-qubit remote simulator                  */
ibmq_perth_simulator        /**< IBM-Q   7-qubit remote simulator                  */

ibmq_qasm_simulator         /**< IBM-Q universal remote simulator                  */

ibmq_almaden                /**< IBM-Q  20-qubit processor                         */
ibmq_armonk                 /**< IBM-Q   1-qubit processor                         */
ibmq_athens                 /**< IBM-Q   5-qubit processor                         */
ibmq_belem                  /**< IBM-Q   5-qubit processor                         */
ibmq_boeblingen             /**< IBM-Q  20-qubit processor                         */
ibmq_bogota                 /**< IBM-Q   5-qubit processor                         */
ibmq_brooklyn               /**< IBM-Q  65-qubit processor                         */
ibmq_cairo                  /**< IBM-Q  27-qubit processor                         */
ibmq_burlington             /**< IBM-Q   5-qubit processor                         */
ibmq_cambridge              /**< IBM-Q  28-qubit processor                         */
ibmq_casablanca             /**< IBM-Q   7-qubit processor                         */
ibmq_dublin                 /**< IBM-Q  27-qubit processor                         */
ibmq_essex                  /**< IBM-Q   5-qubit processor                         */
ibmq_guadalupe              /**< IBM-Q  16-qubit processor                         */
ibmq_hanoi                  /**< IBM-Q  27-qubit processor                         */
ibmq_jakarta                /**< IBM-Q   7-qubit processor                         */
ibmq_johannesburg           /**< IBM-Q  20-qubit processor                         */
ibmq_kolkata                /**< IBM-Q  27-qubit processor                         */
ibmq_lagos                  /**< IBM-Q   7-qubit processor                         */
ibmq_lima                   /**< IBM-Q   5-qubit processor                         */
ibmq_london                 /**< IBM-Q   5-qubit processor                         */
ibmq_manhattan              /**< IBM-Q  65-qubit processor                         */
ibmq_manila                 /**< IBM-Q   5-qubit processor                         */
ibmq_melbourne              /**< IBM-Q  15-qubit processor                         */
ibmq_montreal               /**< IBM-Q  27-qubit processor                         */
ibmq_mumbai                 /**< IBM-Q  27-qubit processor                         */
ibmq_nairobi                /**< IBM-Q   7-qubit processor                         */
ibmq_ourense                /**< IBM-Q   5-qubit processor                         */
ibmq_paris                  /**< IBM-Q  27-qubit processor                         */
ibmq_peekskill              /**< IBM-Q  27-qubit processor                         */
ibmq_poughkeepsie           /**< IBM-Q  20-qubit processor                         */
ibmq_quito                  /**< IBM-Q   5-qubit processor                         */
ibmq_rochester              /**< IBM-Q  53-qubit processor                         */
ibmq_rome                   /**< IBM-Q   5-qubit processor                         */
ibmq_rueschlikon            /**< IBM-Q  16-qubit processor                         */
ibmq_santiago               /**< IBM-Q   5-qubit processor                         */
ibmq_singapore              /**< IBM-Q  20-qubit processor                         */
ibmq_sydney                 /**< IBM-Q  27-qubit processor                         */
ibmq_tenerife               /**< IBM-Q   5-qubit processor                         */
ibmq_tokyo                  /**< IBM-Q  20-qubit processor                         */
ibmq_toronto                /**< IBM-Q  27-qubit processor                         */
ibmq_valencia               /**< IBM-Q   5-qubit processor                         */
ibmq_vigo                   /**< IBM-Q   5-qubit processor                         */
ibmq_yorktown               /**< IBM-Q   5-qubit processor                         */
ibmq_washington             /**< IBM-Q 127-qubit processor                         */
ibmq_perth                  /**< IBM-Q   7-qubit processor                         */







Quantum Inspire

This class executes quantum circuits remotely on the Quantum-Inspire simulator made accessible through QuTech’s Quantum-Inspire cloud services. It adopts the commonQASM v1.0  quantum assembly language. The goal of Quantum Inspire is to provide users access to various technologies to perform quantum computations and insights in principles of quantum computing and access to the community: Quantum Inpsire Website [https://www.quantum-inspire.com/]

Available QDevices in LibKet:

qi_26_simulator  /**< Quantum Inspire 26-qubit simulator                */
qi_34_simulator  /**< Quantum Inspire 34-qubit simulator                */
qi_spin2         /**< Quantum Inspire spin-2 processor (2 qubits)       */
qi_starmon5      /**< Quantum Inspire starmon-5 processor (5 qubits)    */







Rigetti

This class executes quantum circuits remotely on physical quantum devices made accessible through Rigetti’s Quantum Cloud Service (QCS). It adopts Rigetti’s Quantum Instruction Language. Rigetti builds quantum computers and the superconducting quantum processors that power them: Rigetti Website [https://www.rigetti.com/about-rigetti-computing]

Available QDevices in LibKet:

rigetti_aspen_8_simulator   /**< Rigetti Aspen-8 simulator                         */
rigetti_aspen_9_simulator   /**< Rigetti Aspen-9 simulator                         */
rigetti_aspen_10_simulator  /**< Rigetti Aspen-10 simulator                        */
rigetti_9q_square_simulator /**< Rigetti 9Q-square simulator                       */
rigetti_aspen_8             /**< Rigetti Aspen-8 processor                         */
rigetti_aspen_9             /**< Rigetti Aspen-9 processor                         */
rigetti_aspen_10            /**< Rigetti Aspen-10 processor                        */







QuEST

The Quantum Exact Simulation Toolkit is a high performance simulator of quantum circuits, state-vectors and density matrices. QuEST implements multiple useful feathuers such as multithreading, GPU acceleration and distribution: QuEST Website [https://quest.qtechtheory.org/]

Available QDevices in LibKet:

quest   /**< QuEST simulator                                   */







QX

The QX Simulator is a universal quantum computer simulator developped at QuTech by Nader Khammassi. The QX allows quantum algorithm designers to simulate the execution of their quantum circuits on a quantum computer. It adopts a low-level quantum assembly language Quantum Code: QX Website [http://www.quantum-studio.net/]

Available QDevices in LibKet:

qx    /**< QX simulator                                      */







OpenQL

This class compiles the quantum circuit using the OpenQL backend. It adopts the OpenQL quantum assembly language. OpenQL is a framework for high-level quantum programming in C++/Python. The framework provides a compiler for compiling and optimizing quantum code. The compiler produces the intermediate quantum assembly language and the compiled micro-code for various target platforms: OpenQL website [https://github.com/QE-Lab/OpenQL]

Available QDevices in LibKet:

openql_cc_light_compiler     /**< OpenQL compiler for CC-Light                      */
openql_cc_light17_compiler   /**< OpenQL compiler for CC-Light17                    */
openql_qx_compiler           /**< OpenQL compiler for QX simulator                  */










            

          

      

      

    

  

    
      
          
            
  
Tutorials

These set of tutorials provide more insight in the workings of LibKet for different commonly used quantum circuits, backends and advanced operations. All tutorial code can be found in the LibKet examples folder. If not mentioned otherwise, all expressions are evaluated for 1024 shots on all active backends. This section is complemantary material to the example code and as such the tutorials are best followed with code and documenation side to side.

Tutorial 1: Bell state

This tutorial shows how to create a simple LibKet expression, the Bell circuit.

[image: Figure made with TikZ]

Bell state circuit


Tutorial 2: Quantum Teleportation

This tutorial implements the quantum teleportation circuit, which teleports the state of the first qubit to the third qubit by using measurements taken from the first two qubits.

[image: Figure made with TikZ]

Quantum Teleportation circuit


Tutorial 3: Advanced

This tutorial shows the use of more advanced filters and gates to create this arbitrary circuit. The circuit itselfs serves no real purpose, but is rather an example of how LibKet handles filters and gate functors.

[image: Figure made with TikZ]

Advanced circuit


Tutorial 4: Static_for with graph

This tutorial shows how to implement the static_for function in combination with the LibKet graph class. Here the static_for loop is used to apply a cnot gate between every connected node in the graph. The ring graph with five nodes is represented as a list of edges. From this, it follows that the static_for loop should iterate over all edges in this list and apply a cnot function between two nodes that are connected, where the first node is the control and the second node the target qubit.

[image: Figure made with TikZ]

Static_for circuit


Tutorial 5: QPU execution

In this tutorial, three methods of retrieving QPU results are shown:


	Asynchronous execution


	Synchronous execution


	Evaluation




Both asynchronous and synchrounous execution return a pointer to the quantum job. The asynchronous option does not interrupt the code exection and the QPU execution will run in the background, so you can run code while the quantum expression is being evaluated. The synchronous option waits until the QPU has finished evaluating the quantum expression before contuing with the main code. For both methods, results can be retreived using the job->get() function.

The evaluation method is similar to the sychronous execution, but directly returns results in JSON format instead of the QObj pointer. The circuit belows shows the simple quantum expression used in this tutorial:

[image: Figure made with TikZ]

Simple quantum expression


Tutorial 6: Quantum Fourier Transform

Here, the LibKet circuit QFT is used to construct a QFT circuit with allswap at the end. The Quantum Fourier Tranform. More information on the QFT can be found here [https://en.wikipedia.org/wiki/Quantum_Fourier_transform]. The inverse QFT can be applied by using the QFTdag() circuit.

[image: Figure made with TikZ]

QFT circuit for 6 qubits


Tutorial 7: Arbitrary Control Circuit

The following circuit implements the arbitrary control circuit. It takes four parameters: A controlled binary gate, a filter for the control qubits, a filter for the ancilla qubits and a filter for the target qubit. This example implements a 4-qubit controlled X-gate. The first four qubits are used a control for the target qubit \(q_4\). For every \(N\) control qubits, \(N-1\) ancilla qubits are needed, in this case the last three qubits.

[image: Figure made with TikZ]

Arbitrary Control circuit for cnot gate


Tutorial 8: Allswap

The Allswap circuit creates a quantum expression where the qubit order in a given selection is flipped.

[image: Figure made with TikZ]

Allswap circuit


Tutorial 9: QAOA

This tutorial shows the implementation of a QAOA circuit for the Maximum Cut problem on arbitrary graph. More information on the QAOA can be found here [https://arxiv.org/abs/1411.4028]. This toturial shows some more advance use of the static_for() function. The circuit is constructed for a singe QAOA iteration (\(p=1\)). This tutorial only shows how to create the QAOA circuit. For the QAOA to function, an classical optimizer is needed to optimize parameters \(\beta\) and \(\gamma\).

[image: Figure made with TikZ]

QAOA circuit for MaxCut


Tutorial 10: Hook

This tutorial illustrates the usage of the hook gate, which is able to reference another LibKet expression or create an expression from a cQASM string.

[image: Figure made with TikZ]

Circuit created with the Hook function


Tutorial 11: Just-In-Time Compilation

Using Just-In-Time Compilation, LibKet is able to use command line inputs for compile-time expresions. In this tutorial, a LibKet expression can be entered via the command line and will be processed later on in program.

Tutorial 12: Execution Scripts

he optional ftor_init, ftor_before, and ftor_after make it possible to inject user-defined code at three different locations of the execution process. In this tutorial, a simple statement after the execution collects the histogram data of the experiment using Qiskit’s get_count() function, generates a histogram plot and saves it to a file named ‘histogram.png’ in the build folder.

The init script imports the necessary packages for the qiksit visualization. After execution, the after script gets the counts and plots the histogram. It should be noted that the code injections are idented automatically and must not have trailing \t’s. Each line must end with \n.
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Simple quantum expression for scripts tutorial


Tutorial 13: Unitary decomposition

This tutorial illustrates the basic usage of the built-in decomposition of a controlled 2x2 unitary gate into native gates. The unitary gate accepts an arbitrary 2x2
unitary matrix \(U\) as input and performs the ZYZ decomposition of \(U\). For example the following unitary matrix is used:


\[\begin{split}U = \frac{1}{\sqrt{2}}
 \begin{pmatrix}
 1 & -1\\
 1 & 1
 \end{pmatrix}\end{split}\]

The decomposition created the following quantum circuit:
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ZYZ decomposition of the unitary matrix


Tutorial 14: Controlled unitary decomposition

This tutorial implementes the controlled unitary decomposition, which is similar the the previous tutorial on the decomposed unitary. In this case, a control qubit is incluced to form a binary gate which controls the rotations of the unitary. For example the following unitary matrix is used:


\[\begin{split}U = \frac{1}{\sqrt{2}}
 \begin{pmatrix}
 1 & -1\\
 1 & 1
 \end{pmatrix}\end{split}\]

The controlled decomposition created the following quantum circuit:
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ZYZ decomposition of the unitary matrix


Tutorial 15: Quantum Program

The quantum program allows for a linear approach to constructing a quantum expression, as often seen in QASM languages. Here, qubit gates and operations are added sequantially and are translated to a quantum expression.
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Circuit created by using the QProgram


Tutorial 16: HHL Algorithm

This tutorial shows the implementation of the Harrow-Hassidim-Lloyd (HHL) algorithm (see link [https://arxiv.org/pdf/2108.09004.pdf]). This algorithm is used to solve Linear systems of the form:


\[A \vec{x} = \vec{b}\]

where A is an \(N_{b}×N_{b}\) Hermitian matrix and \(\vec{x}\) and \(\vec{b}\) are \(N_b\)-dimensional vectors. In this example, \(A\) and \(\vec{b}\) are set to:


\[ \begin{align}\begin{aligned}\begin{split} A =
  \begin{pmatrix}
  1 & -\frac{1}{3}\\
  -\frac{1}{3} & 1
  \end{pmatrix}\\\end{split}\\\begin{split}\vec{b} = \begin{pmatrix} 0 \\ 1\end{pmatrix}\end{split}\end{aligned}\end{align} \]

The controlled unitary evolution is computed to be:


\[\begin{split}U = e^{iAt} = e^{iA\frac{3\pi}{4}} = \frac{1}{2}
 \begin{pmatrix}
 -1+i & 1+i\\
  1+1 & -1+i
 \end{pmatrix}\\\end{split}\]

Which results in the following circuit example:
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HHL Algorithm for a 2x2 matrix A and 2x1 vector b


The output result indeed confirms the expected ratio found in the HHL paper, which should be around \(prob(b_0)\) : \(prob(b_1)\) =  1 : 9.




            

          

      

      

    

  

    
      
          
            
  
API documentation


C++ API:

For the full API documentation, visit: C++ API [https://mmoelle1.gitlab.io/LibKet/]



C API:



Python API:





            

          

      

      

    

  

    
      
          
            
  
Release Notes

[WIP]




            

          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions


	Why the name LibKet?

The acronym LibKet stands for Quantum Expression Template
Library and is an allusion to the famous bra-ket notation [https://en.wikipedia.org/wiki/Bra–ket_notation] since the Dutch
spelling of the word Quantum is Kwantum.



	Can you add support for the quantum device X?

Sure, as long as there exists either a Python package or a C/C++
API that allows to communicate with the quantum device, we can add
support for it. Just let us know which quantum device you would
like to see supported in LibKet by creating a feature request [https://gitlab.com/mmoelle1/LibKet/-/issues].



	I think I found a bug in LibKet. How can I report it?

Please create an bug report [https://gitlab.com/mmoelle1/LibKet/-/issues] describing the bug,
your specific setup (operating system and compiler versions) and
the steps to reproduce the bug. We will take care it is fixed.



	I developed a bugfix/new feature. How can I contribute it?

Please fork [https://gitlab.com/mmoelle1/LibKet/-/forks/new] the
LibKet repository, commit your changes there, and create a
merge request [https://gitlab.com/mmoelle1/LibKet/-/merge_requests/new].



	I used LibKet for my research. How can I cite it?

Please use the folloginw BibTeX entry to cite LibKet

@InProceedings{10.1007/978-3-030-50433-5_35,
author    = {M{\"o}ller, Matthias and Schalkers, Merel},
editor    = {Krzhizhanovskaya, Valeria V. and Z{\'a}vodszky, G{\'a}bor and Lees, Michael H. and Dongarra, Jack J. and Sloot, Peter M. A. and Brissos, S{\'e}rgio and Teixeira, Jo{\~a}o},
title     = {LibKet: A Cross-Platform Programming Framework for Quantum-Accelerated Scientific Computing},
booktitle = {Computational Science -- ICCS 2020},
year      = {2020},
publisher = {Springer International Publishing},
address   = {Cham},
pages     = {451--464},
isbn      = {978-3-030-50433-5},
doi       = {10.1007/978-3-030-50433-5_35},
url       = {https://doi.org/10.1007/978-3-030-50433-5_35}
}







	I like LibKet. Can I contribute to its further development?

That’s nice to hear. Sure, you are more than welcome to contribute
to the developmet of LibKet. Please contact us by email
(m.moller@tudelft.nl) or
slack [https://join.slack.com/t/libket/shared_invite/zt-mrlp17rr-vFyaF~pDgzBb3iRB_DO7jA]
to discuss possible collaborations.
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